Tidal dissipation in rotating giant planets

نویسنده

  • G. I. Ogilvie
چکیده

Many extrasolar planets orbit sufficiently close to their host stars that significant tidal interactions can be expected, resulting in an evolution of the spin and orbital properties of the planets. The accompanying dissipation of energy can also be an important source of heat, leading to the inflation of short-period planets and even mass loss through Roche-lobe overflow. Tides may therefore play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between gaseous giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. Traditionally, the efficiency of tidal dissipation is simply parametrized by a quality factorQ, which depends, in principle, in an unknown way on the frequency and amplitude of the tidal forcing. In this paper, we treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets such as Jupiter, Saturn, or the short-period extrasolar planets. Efficient convection enforces a nearly adiabatic stratification in these bodies, which may or may not contain rocky cores. With some modifications, our approach can also be applied to fully convective low-mass stars. In cases of interest, the tidal forcing frequencies are typically comparable to the spin frequency of the planet but are small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, which possess a dense or continuous frequency spectrum in the absence of viscosity, while any radiative regions support generalized Hough waves. We formulate the relevant equations for studying the excitation of these disturbances and present a set of illustrative numerical calculations of the tidal dissipation rate. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; [email protected] UCO/Lick Observatory,University of California, Santa Cruz, CA 95064; [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscoelastic tidal dissipation in giant planets and formation of hot Jupiters through high-eccentricity migration

We study the possibility of tidal dissipation in the solid cores of giant planets and its implication for the formation of hot Jupiters through high-eccentricity migration. We present a general framework by which the tidal evolution of planetary systems can be computed for any form of tidal dissipation, characterized by the imaginary part of the complex tidal Love number, Im[k̃2(ω)], as a functi...

متن کامل

Tidal dissipation in rotating fluid bodies: a simplified model

We study the tidal forcing, propagation and dissipation of linear inertial waves in a rotating fluid body. The intentionally simplified model involves a perfectly rigid core surrounded by a deep ocean consisting of a homogeneous incompressible fluid. Centrifugal effects are neglected, but the Coriolis force is considered in full, and dissipation occurs through viscous or frictional forces. The ...

متن کامل

The Internal Structural Adjustment due to Tidal Heating of Short - Period Inflated Giant Planets

Several short-period Jupiter-mass planets have been discovered around nearby solar-type stars. During the circularization of their orbits, the dissipation of tidal disturbance by their host stars heats the interior and inflates the sizes of these planets. Based on a series of internal structure calculations for giant planets, we examine the physical processes which determine their luminosity-ra...

متن کامل

Formation and stellar spin-orbit misalignment of hot Jupiters from Lidov–Kozai oscillations in stellar binaries

Observed hot Jupiter (HJ) systems exhibit a wide range of stellar spin-orbit misalignment angles. This paper investigates the inward migration of giant planets due to Lidov–Kozai (LK) oscillations induced by a distant stellar companion. We conduct a large population synthesis study, including the octupole gravitational potential from the stellar companion, mutual precession of the host stellar ...

متن کامل

Falling Transiting Extrasolar Giant Planets

We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008